A short survey on perfect codes in Cayley graphs

Sanming Zhou

School of Mathematics and Statistics
The University of Melbourne
Australia

International Workshop on Symmetries of Graph and Networks, 29/1/2018, Sanya
A code is perfect if it achieves maximum possible error correction without ambiguity.

C is a perfect t-code if it has covering radius t and minimum distance $2t + 1$ (with respect to the Hamming distance).

C is a perfect t-code iff every word of length n is at distance no more than t to exactly one codeword of C.
perfect codes in the classical setting

- A code is perfect if it achieves maximum possible error correction without ambiguity.
- C is a perfect t-code if it has covering radius t and minimum distance $2t + 1$ (with respect to the Hamming distance).
- C is a perfect t-code iff every word of length n is at distance no more than t to exactly one codeword of C.
A code is perfect if it achieves maximum possible error correction without ambiguity.

C is a perfect t-code if it has covering radius t and minimum distance $2t + 1$ (with respect to the Hamming distance).

C is a perfect t-code iff every word of length n is at distance no more than t to exactly one codeword of C.
linear perfect codes

Trivial perfect codes:
singletons; \{00 \cdots 0, 11 \cdots 1\} \quad (n \text{ odd})

Nontrivial linear perfect codes:
Hamming codes; Golay code \(G_{23}\); Golay code \(G_{11}\)

Theorem

(Tietäväinen-van Lint, Zinov’ev-Leont’ev, 1970s)
These are the only nontrivial linear perfect codes.

However, there are many nontrivial nonlinear perfect codes.
A code in a graph $\Gamma = (V, E)$ is a subset of V.

A code C is a perfect t-code in Γ if every vertex is at distance no more than t to exactly one vertex of C.

That is, the t-neighbourhoods of the vertices of C form a partition of V.

Perfect 1-codes = efficient dominating sets = independent perfect dominating sets

Perfect t-codes = perfect t-distance dominating sets
perfect codes in graphs

A code in a graph $\Gamma = (V, E)$ is a subset of V.

A code C is a perfect t-code in Γ if every vertex is at distance no more than t to exactly one vertex of C.

That is, the t-neighbourhoods of the vertices of C form a partition of V.

Perfect 1-codes = efficient dominating sets = independent perfect dominating sets

Perfect t-codes = perfect t-distance dominating sets
• A code in a graph $\Gamma = (V, E)$ is a subset of V.
• A code C is a perfect t-code in Γ if every vertex is at distance no more than t to exactly one vertex of C.
• That is, the t-neighbourhoods of the vertices of C form a partition of V.
• Perfect 1-codes = efficient dominating sets = independent perfect dominating sets
• Perfect t-codes = perfect t-distance dominating sets
A code in a graph $\Gamma = (V, E)$ is a subset of V.

A code C is a perfect t-code in Γ if every vertex is at distance no more than t to exactly one vertex of C.

That is, the t-neighbourhoods of the vertices of C form a partition of V.

Perfect 1-codes = efficient dominating sets = independent perfect dominating sets

Perfect t-codes = perfect t-distance dominating sets
A code in a graph $\Gamma = (V, E)$ is a subset of V.

A code C is a perfect t-code in Γ if every vertex is at distance no more than t to exactly one vertex of C.

That is, the t-neighbourhoods of the vertices of C form a partition of V.

Perfect 1-codes = efficient dominating sets = independent perfect dominating sets

Perfect t-codes = perfect t-distance dominating sets
perfect codes
perfect codes in Cayley graphs
cyclotomic graphs
circulant graphs
subgroups as perfect codes

a brief history

- N. Biggs (1973): distance-transitive graphs
- P. Delsarte (1973): association schemes (in particular, distance-regular graphs)
- J. Kratochvíl (1986): general graphs
- Many results in the literature
perfect codes

perfect codes in Cayley graphs
cyclotomic graphs
circulant graphs
subgroups as perfect codes

a brief history

- N. Biggs (1973): distance-transitive graphs
- P. Delsarte (1973): association schemes (in particular, distance-regular graphs)
 - J. Kratochvíl (1986): general graphs
- Many results in the literature
a brief history

- N. Biggs (1973): distance-transitive graphs
- P. Delsarte (1973): association schemes (in particular, distance-regular graphs)
- J. Kratochvíl (1986): general graphs
- Many results in the literature
motivation for studying perfect codes in Cayley graphs

- q-ary perfect t-codes of length $n = \text{perfect } t\text{-codes in Hamming graph } H(n, q)$
- $H(n, q)$ corresponds to an association scheme, leading to Biggs and Delsarte's work on perfect codes in distance-transitive graphs and association schemes.
- $H(n, q)$ can be also viewed as a Cayley graph.
- q-ary perfect t-codes of length n w.r.t. the Lee metric are precisely perfect t-codes in $C_q \square \cdots \square C_q$ (which is also a Cayley graph)
motivation for studying perfect codes in Cayley graphs

- q-ary perfect t-codes of length $n = \text{perfect } t\text{-codes in Hamming graph } H(n, q)$
- $H(n, q)$ corresponds to an association scheme, leading to Biggs and Delsarte's work on perfect codes in distance-transitive graphs and association schemes.
- $H(n, q)$ can be also viewed as a Cayley graph.
- q-ary perfect t-codes of length n w.r.t. the Lee metric are precisely perfect t-codes in $C_q \square \cdots \square C_q$ (which is also a Cayley graph)
motivation for studying perfect codes in Cayley graphs

• q-ary perfect t-codes of length $n = \text{perfect } t\text{-codes in Hamming graph } H(n, q)$

• $H(n, q)$ corresponds to an association scheme, leading to Biggs and Delsarte’s work on perfect codes in distance-transitive graphs and association schemes.

• $H(n, q)$ can be also viewed as a Cayley graph.

• q-ary perfect t-codes of length n w.r.t. the Lee metric are precisely perfect t-codes in $C_q \square \cdots \square C_q$ (which is also a Cayley graph)
motivation for studying perfect codes in Cayley graphs

- q-ary perfect t-codes of length $n = \text{perfect } t\text{-codes in Hamming graph } H(n, q)$
- $H(n, q)$ corresponds to an association scheme, leading to Biggs and Delsarte's work on perfect codes in distance-transitive graphs and association schemes.
- $H(n, q)$ can be also viewed as a Cayley graph.
- q-ary perfect t-codes of length n w.r.t. the Lee metric are precisely perfect t-codes in $C_q \square \cdots \square C_q$ (which is also a Cayley graph)
• A factorization of G is a pair (A, B) of subsets of G, not necessarily subgroups, such that every element of G can be uniquely represented as ab where $a \in A$ and $b \in B$.

• A tiling of G is a normed factorization (A, B) of G, in the sense that $e \in A \cap B$.

• If (A, B) is a tiling of G such that $A^{-1} = A$, then B is a perfect code of $\text{Cay}(G, A \setminus \{e\})$.
• A factorization of G is a pair (A, B) of subsets of G, not necessarily subgroups, such that every element of G can be uniquely represented as ab where $a \in A$ and $b \in B$.

• A tiling of G is a normed factorization (A, B) of G, in the sense that $e \in A \cap B$.

• If (A, B) is a tiling of G such that $A^{-1} = A$, then B is a perfect code of $\text{Cay}(G, A \setminus \{e\})$.
• A \textbf{factorization} of G is a pair (A, B) of subsets of G, not necessarily subgroups, such that every element of G can be uniquely represented as ab where $a \in A$ and $b \in B$.
• A \textbf{tiling} of G is a \textbf{normed} factorization (A, B) of G, in the sense that $e \in A \cap B$.
• If (A, B) is a tiling of G such that $A^{-1} = A$, then B is a perfect code of $\text{Cay}(G, A \setminus \{e\})$.
perfect codes in Cayley graphs

Problem
Construct/characterize/classify perfect t-codes in a given Cayley graph or prove that such a code does not exist.
perfect codes
perfect codes in Cayley graphs
cyclotomic graphs
circulant graphs
subgroups as perfect codes

a few known results

• Folklore: -1 must be an eigenvalue if a regular graph has a perfect 1-code
• G. Etienne (1987): necessary condition for the existence of perfect 1-codes in “normal” Cayley graphs
• J. Lee (2001): existence of perfect 1-codes in “normal” Cayley graphs in terms of covers of complete graphs
• I. J. Dejter and O. Serra (2003): E-chains of Cayley graphs on symmetric groups
• Special families such as circulants
a few known results

- Folklore: -1 must be an eigenvalue if a regular graph has a perfect 1-code
- G. Etienne (1987): necessary condition for the existence of perfect 1-codes in “normal” Cayley graphs
 - J. Lee (2001): existence of perfect 1-codes in “normal” Cayley graphs in terms of covers of complete graphs
 - I. J. Dejter and O. Serra (2003): E-chains of Cayley graphs on symmetric groups
- Special families such as circulants
A few known results

- Folklore: -1 must be an eigenvalue if a regular graph has a perfect 1-code.
- J. Lee (2001): existence of perfect 1-codes in “normal” Cayley graphs in terms of covers of complete graphs.
- Special families such as circulants.
a few known results

- Folklore: -1 must be an eigenvalue if a regular graph has a perfect 1-code
- G. Etienne (1987): necessary condition for the existence of perfect 1-codes in “normal” Cayley graphs
- J. Lee (2001): existence of perfect 1-codes in “normal” Cayley graphs in terms of covers of complete graphs
- I. J. Dejter and O. Serra (2003): E-chains of Cayley graphs on symmetric groups

- Special families such as circulants
a few known results

- Folklore: -1 must be an eigenvalue if a regular graph has a perfect 1-code
- G. Etienne (1987): necessary condition for the existence of perfect 1-codes in “normal” Cayley graphs
- J. Lee (2001): existence of perfect 1-codes in “normal” Cayley graphs in terms of covers of complete graphs
- I. J. Dejter and O. Serra (2003): E-chains of Cayley graphs on symmetric groups
- Special families such as circulants
Sufficient conditions for perfect codes in Gaussian and Eisenstein-Jacobi graphs were given by C. Martínez, et al. (2007-08)

Such conditions are also necessary (Zhou, 2015).

Gaussian and EJ graphs are two subfamilies of cyclotomic graphs.
cycloctomic graphs

- Sufficient conditions for perfect codes in Gaussian and Eisenstein-Jacobi graphs were given by C. Martínez, et al. (2007-08)
- Such conditions are also necessary (Zhou, 2015).
- Gaussian and EJ graphs are two subfamilies of cycloctomic graphs.
Sufficient conditions for perfect codes in Gaussian and Eisenstein-Jacobi graphs were given by C. Martínez, et al. (2007-08)

Such conditions are also necessary (Zhou, 2015).

Gaussian and EJ graphs are two subfamilies of cyclotomic graphs.
• Take an mth primitive root ζ_m of unity, e.g. $\zeta_m = e^{2\pi i / m}$, where $m \geq 3$.

• Let A be a nonzero ideal of $\mathbb{Z}[\zeta_m]$.

• $G_m(A)$: Cayley graph of $\mathbb{Z}[\zeta_m]/A$ with connection set \{\(\pm (\zeta_m^i + A) : 0 \leq i \leq m - 1\}\).

• $G_m(A)$ is a finite, connected, arc-transitive graph with order $N(A)$ and valency a divisor of $2m$.

• $G_m^*(A)$: Cayley graphs of $\mathbb{Z}[\zeta_m]/A$ with connection set \{\(\pm (\zeta_m^i + A) : 0 \leq i \leq \phi(m) - 1\}\).

• $G_m^*(A)$ is a spanning subgraph of $G_m(A)$.
• Take an \(m \)th primitive root \(\zeta_m \) of unity, e.g. \(\zeta_m = e^{2\pi i/m} \), where \(m \geq 3 \).

• Let \(A \) be a nonzero ideal of \(\mathbb{Z}[\zeta_m] \).

 • \(G_m(A) \): Cayley graph of \(\mathbb{Z}[\zeta_m]/A \) with connection set \(\{\pm (\zeta_m^i + A) : 0 \leq i \leq m - 1 \} \).

 • \(G_m(A) \) is a finite, connected, arc-transitive graph with order \(N(A) \) and valency a divisor of \(2m \).

 • \(G_m^*(A) \): Cayley graphs of \(\mathbb{Z}[\zeta_m]/A \) with connection set \(\{\pm (\zeta_m^i + A) : 0 \leq i \leq \phi(m) - 1 \} \).

 • \(G_m^*(A) \) is a spanning subgraph of \(G_m(A) \).
• Take an \(m \)th primitive root \(\zeta_m \) of unity, e.g. \(\zeta_m = e^{2\pi i/m} \), where \(m \geq 3 \).

• Let \(A \) be a nonzero ideal of \(\mathbb{Z}[\zeta_m] \).

• \(G_m(A) \): Cayley graph of \(\mathbb{Z}[\zeta_m]/A \) with connection set \(\{ \pm(\zeta_m^i + A) : 0 \leq i \leq m - 1 \} \).

• \(G_m(A) \) is a finite, connected, arc-transitive graph with order \(N(A) \) and valency a divisor of \(2m \).

• \(G^*_m(A) \): Cayley graphs of \(\mathbb{Z}[\zeta_m]/A \) with connection set \(\{ \pm(\zeta_m^i + A) : 0 \leq i \leq \phi(m) - 1 \} \).

• \(G^*_m(A) \) is a spanning subgraph of \(G_m(A) \).
• Take an \(m \)th primitive root \(\zeta_m \) of unity, e.g. \(\zeta_m = e^{2\pi i / m} \), where \(m \geq 3 \).

• Let \(A \) be a nonzero ideal of \(\mathbb{Z}[\zeta_m] \).

• \(G_m(A) \): Cayley graph of \(\mathbb{Z}[\zeta_m]/A \) with connection set \(\{ \pm (\zeta_m^i + A) : 0 \leq i \leq m - 1 \} \).

• \(G_m(A) \) is a finite, connected, arc-transitive graph with order \(N(A) \) and valency a divisor of \(2m \).

• \(G^*_m(A) \): Cayley graphs of \(\mathbb{Z}[\zeta_m]/A \) with connection set \(\{ \pm (\zeta_m^i + A) : 0 \leq i \leq \phi(m) - 1 \} \).

• \(G^*_m(A) \) is a spanning subgraph of \(G_m(A) \).
• Take an mth primitive root ζ_m of unity, e.g. $\zeta_m = e^{2\pi i / m}$, where $m \geq 3$.

• Let A be a nonzero ideal of $\mathbb{Z}[\zeta_m]$.

• $G_m(A)$: Cayley graph of $\mathbb{Z}[\zeta_m]/A$ with connection set $\{\pm(\zeta_i^j + A) : 0 \leq i \leq m - 1\}$.

• $G_m(A)$ is a finite, connected, arc-transitive graph with order $N(A)$ and valency a divisor of $2m$.

• $G^*_m(A)$: Cayley graphs of $\mathbb{Z}[\zeta_m]/A$ with connection set $\{\pm(\zeta_i^j + A) : 0 \leq i \leq \phi(m) - 1\}$.

• $G^*_m(A)$ is a spanning subgraph of $G_m(A)$.
• Take an mth primitive root ζ_m of unity, e.g. $\zeta_m = e^{2\pi i / m}$, where $m \geq 3$.

• Let A be a nonzero ideal of $\mathbb{Z}[\zeta_m]$.

• $G_m(A)$: Cayley graph of $\mathbb{Z}[\zeta_m]/A$ with connection set $\{\pm (\zeta_m^i + A) : 0 \leq i \leq m - 1\}$.

• $G_m(A)$ is a finite, connected, arc-transitive graph with order $N(A)$ and valency a divisor of $2m$.

• $G^*_m(A)$: Cayley graphs of $\mathbb{Z}[\zeta_m]/A$ with connection set $\{\pm (\zeta_m^i + A) : 0 \leq i \leq \phi(m) - 1\}$.

• $G^*_m(A)$ is a spanning subgraph of $G_m(A)$.
Distance in $G_m^*(A)$ is the Mannheim distance, but distance in $G_m(A)$ is not well understood.

Denote $\bar{\alpha} = \alpha + A$ for $\alpha \in \mathbb{Z}[\zeta_m]$.

The distance between $\bar{\alpha}$ and $\bar{\beta}$ in $G_m^*(A)$ is the Mannheim distance

$$\|\bar{\alpha} - \bar{\beta}\|,$$

where

$$\|\bar{\alpha}\| := \min\{|\alpha - \delta| : \delta \in A\},$$

where

$$|\alpha| := \sum_{i=0}^{\phi(m)-1} |a_i|$$

for

$$\alpha = \sum_{i=0}^{\phi(m)-1} a_i \zeta_m^i \in \mathbb{Z}[\zeta_m].$$
Distance in $G_m^*(A)$ is the Mannheim distance, but distance in $G_m(A)$ is not well understood.

Denote $\bar{\alpha} = \alpha + A$ for $\alpha \in \mathbb{Z}[\zeta_m]$.

The distance between $\bar{\alpha}$ and $\bar{\beta}$ in $G_m^*(A)$ is the Mannheim distance

$$\|\bar{\alpha} - \bar{\beta}\|,$$

where

$$\|\bar{\alpha}\| := \min\{|\alpha - \delta| : \delta \in A\},$$

where

$$|\alpha| := \sum_{i=0}^{\phi(m)-1} |a_i|$$

for

$$\alpha = \sum_{i=0}^{\phi(m)-1} a_i \zeta_m^i \in \mathbb{Z}[\zeta_m].$$
Distance in $G^*_m(A)$ is the Mannheim distance, but distance in $G_m(A)$ is not well understood.

Denote $\bar{\alpha} = \alpha + A$ for $\alpha \in \mathbb{Z}[\zeta_m]$.

The distance between $\bar{\alpha}$ and $\bar{\beta}$ in $G^*_m(A)$ is the Mannheim distance

$$\|\bar{\alpha} - \bar{\beta}\|,$$

where

$$\|\bar{\alpha}\| := \min\{|\alpha - \delta| : \delta \in A\},$$

where

$$|\alpha| := \sum_{i=0}^{\phi(m)-1} |a_i|$$

for

$$\alpha = \sum_{i=0}^{\phi(m)-1} a_i \zeta_m^i \in \mathbb{Z}[\zeta_m].$$
Let D be an ideal of $\mathbb{Z}[\zeta_m]$ containing A.

Lemma

(a) D/A is a perfect t-code in $G_m^*(A)$ iff

$$\text{norm of } D = \text{size of the } t\text{-neighbourhood of any vertex}$$

and for any $\delta \in A$ and $\eta \in D - A$,

$$|\eta - \delta| \geq 2t + 1. \quad (1)$$

(b) D/A is a perfect t-code in $G_m(A)$ only if

$$\text{norm of } D = \text{size of the } t\text{-neighbourhood of any vertex}$$

and (1) holds.
Let D be an ideal of $\mathbb{Z}[\zeta_m]$ containing A.

Lemma

(a) D/A is a perfect t-code in $G^*_m(A)$ iff

\[\text{norm of } D = \text{size of the } t\text{-neighbourhood of any vertex} \]

and for any $\delta \in A$ and $\eta \in D - A,$

\[|\eta - \delta| \geq 2t + 1. \] \hspace{1cm} (1)

(b) D/A is a perfect t-code in $G_m(A)$ only if

\[\text{norm of } D = \text{size of the } t\text{-neighbourhood of any vertex} \]

and (1) holds.
m = 4: Gaussian graphs

Example

(C. Martínez, et al. 2007)
Take $\zeta_4 = i$, $i^2 = -1$. Then

$$\mathbb{Z}[i] = \{x + yi : x, y \in \mathbb{Z}\}$$

is the ring of Gaussian integers, with norm

$$N(x + yi) = x^2 + y^2.$$

Let $0 \neq \alpha = a + bi \in \mathbb{Z}[i]$ be such that $N(\alpha) \geq 5$. Call

$$G_\alpha := G_4((\alpha)) = G_4^*((\alpha))$$

a Gaussian network.
perfect codes in Gaussian graphs

Theorem

Let $0 \neq \alpha = a + bi \in \mathbb{Z}[i]$ ($a, b \geq 0$) and $0 \neq \beta \in \mathbb{Z}[i]$ be such that $N(\alpha) \geq 5$ and β divides α.

Let t be an integer between 1 and $\lfloor (a + b - 1)/2 \rfloor$.

Then $(\beta)/(\alpha)$ is a perfect t-code in G_α if and only if β is an associate of $t + (t + 1)i$ or $t - (t + 1)i$.

[S. Zhou, 2015]
Theorem

Let $0 \neq \alpha = a + bi \in \mathbb{Z}[i]$ $(a, b \geq 0)$ and $0 \neq \beta \in \mathbb{Z}[i]$ be such that $N(\alpha) \geq 5$ and β divides α.

Let t be an integer between 1 and $\lfloor (a + b - 1)/2 \rfloor$.

Then $(\beta)/(\alpha)$ is a perfect t-code in G_α if and only if β is an associate of $t + (t + 1)i$ or $t - (t + 1)i$.

[S. Zhou, 2015]
$m = 3$: Eisenstein-Jacobi graphs

Example

(C. Martínez, et al. 2007)
Take $\zeta_3 = -\rho := -(1 + \sqrt{-3})/2$. Then

$$\mathbb{Z}[\rho] = \{ c + d\rho : c, d \in \mathbb{Z} \}$$

is the ring of Eisenstein-Jacobi integers, with norm

$$N(x + y\rho) = x^2 + xy + y^2.$$

Call

$$EJ_\alpha := G_3((\alpha))$$

an Eisenstein-Jacobi (EJ) graph.
perfect codes in EJ graphs

Theorem

Let $0 \neq \alpha = a + b\rho \in \mathbb{Z}[\rho]$ $(a, b \geq 0)$ and $0 \neq \beta \in \mathbb{Z}[\rho]$ be such that $N(\alpha) \geq 7$ and β divides α.

Let t be an integer between 1 and $\lfloor (a + b - 1)/2 \rfloor$.

Then $(\beta)/(\alpha)$ is a perfect t-code in EJ_α if and only if β is an associate of $(t + 1) + t\rho$ or $t + (t + 1)\rho$.

[S. Zhou, 2015]
perfect codes in EJ graphs

Theorem

Let $0 \neq \alpha = a + b \rho \in \mathbb{Z}[\rho]$ ($a, b \geq 0$) and $0 \neq \beta \in \mathbb{Z}[\rho]$ be such that $N(\alpha) \geq 7$ and β divides α.

Let t be an integer between 1 and $\lfloor (a + b - 1)/2 \rfloor$.

Then $(\beta)/(\alpha)$ is a perfect t-code in EJ_α if and only if β is an associate of $(t + 1) + t \rho$ or $t + (t + 1) \rho$.

[S. Zhou, 2015]
Example

\[EJ_{1+9\rho} \cong \text{Cay}(\mathbb{Z}_{91}, \{\pm 10, \pm 9, \pm 1\}) \]
\[f : x + y\rho \mod (1 + 9\rho) \mapsto x + 10y \mod 91. \]

The only perfect code in \(EJ_{1+9\rho} \) of the form \(\beta/(1 + 9\rho) \) is

\((2 + \rho)/(1 + 9\rho), \)

which is a perfect 1-code with size \(N(1 + 9\rho)/N(2 + \rho) = 13. \)
Example

\[E_{J_{1+9\rho}} \cong \text{Cay}(\mathbb{Z}_{91}, \{\pm 10, \pm 9, \pm 1\}) \]

\[f : x + y\rho \mod (1 + 9\rho) \mapsto x + 10y \mod 91. \]

The only perfect code in \(E_{J_{1+9\rho}} \) of the form \((\beta)/(1 + 9\rho)\) is

\[(2 + \rho)/(1 + 9\rho), \]

which is a perfect 1-code with size \(N(1 + 9\rho)/N(2 + \rho) = 13. \)
We have

\[(2 + \rho)/(1 + 9\rho) = \{j(1 + 2\rho) \mod (1 + 9\rho) : 0 \leq j \leq 12\}\].

Since

\[f : j(1 + 2\rho) \mod (1 + 9\rho) \mapsto 21j \mod 91, \ 0 \leq j \leq 12,\]

we may view \((2 + \rho)/(1 + 9\rho)\) as the perfect 1-code

\[C = \{0, 21, 42, 63, 84, 14, 35, 56, 77, 7, 28, 49, 70\} \mod 91\]

in \(\text{Cay}(\mathbb{Z}_{91}, \{\pm 10, \pm 9, \pm 1\})\).
A perfect 1-code in $EJ_{1+9\rho} \cong \text{Cay}(\mathbb{Z}_{91}, \{\pm 10, \pm 9, \pm 1\})$
Example
Let p be an odd prime and $n \geq 2p + 1$ an integer with $n \equiv 1 \mod 2p$.

Then every $2p$-valent first kind Frobenius circulant is isomorphic to a cyclotomic graph $G_p(A)$ for some ideal A of $\mathbb{Z}[\zeta_p]$.
perfecst codes in circulants

- N. Obradović, et al. (2007): if $|S| = 3$, then $\text{Cay}(\mathbb{Z}_n, S)$ admits a perfect code iff $n \equiv 4 \mod 8$; if $|S| = 4$, then $\text{Cay}(\mathbb{Z}_n, S)$ admits a perfect code iff the elements of $S \cup \{0\}$ are pairwise distinct mod 5.

- Y-P. Deng (2014): necessary and sufficient condition for a circulant graph to admit a perfect code with size a prime number.

- K. Reji Kumar and G. MacGillivray (2013): a few results on perfect codes in circulant graphs.
perfects codes in circulants

- N. Obradović, et al. (2007): if $|S| = 3$, then $\text{Cay}(\mathbb{Z}_n, S)$ admits a perfect code iff $n \equiv 4 \mod 8$;
 if $|S| = 4$, then $\text{Cay}(\mathbb{Z}_n, S)$ admits a perfect code iff the elements of $S \cup \{0\}$ are pairwise distinct mod 5.
- Y-P. Deng (2014): necessary and sufficient condition for a circulant graph to admit a perfect code with size a prime number.
- K. Reji Kumar and G. MacGillivray (2013): a few results on perfect codes in circulant graphs.
perfects codes in circulants

- N. Obradović, et al. (2007):
 if $|S| = 3$, then $\text{Cay}(\mathbb{Z}_n, S)$ admits a perfect code iff $n \equiv 4 \mod 8$;
 if $|S| = 4$, then $\text{Cay}(\mathbb{Z}_n, S)$ admits a perfect code iff the elements of $S \cup \{0\}$ are pairwise distinct mod 5.

- Y-P. Deng (2014): necessary and sufficient condition for a circulant graph to admit a perfect code with size a prime number.

- K. Reji Kumar and G. MacGillivray (2013): a few results on perfect codes in circulant graphs.
Theorem
(Feng, Huang and Z, 2017)
Let p be an odd prime.
A connected circulant graph $\text{Cay}(\mathbb{Z}_n, S)$ of valency $p - 1$ admits a perfect code iff p divides n and the elements of $S \cup \{0\}$ are pairwise distinct mod p.

Theorem
(Feng, Huang and Z, 2017)
Let p be a prime and l the exponent of p in n.
A connected circulant graph $\text{Cay}(\mathbb{Z}_n, S)$ of valency $p^l - 1$ admits a perfect code iff the elements of $S \cup \{0\}$ are pairwise distinct mod p^l.

Y-P. Deng et al. (2017): Similar results but different approach. They also considered valency pq coprime to n/pq.
Theorem
(Feng, Huang and Z, 2017)
Let p be an odd prime.
A connected circulant graph $\text{Cay}(\mathbb{Z}_n, S)$ of valency $p - 1$ admits a perfect code iff p divides n and the elements of $S \cup \{0\}$ are pairwise distinct mod p.

Theorem
(Feng, Huang and Z, 2017)
Let p be a prime and l the exponent of p in n.
A connected circulant graph $\text{Cay}(\mathbb{Z}_n, S)$ of valency $p^l - 1$ admits a perfect code iff the elements of $S \cup \{0\}$ are pairwise distinct mod p^l.

Y-P. Deng et al. (2017): Similar results but different approach. They also considered valency pq coprime to n/pq.
Theorem
(Feng, Huang and Z, 2017)
Let p be an odd prime.

A connected circulant graph $\text{Cay}(\mathbb{Z}_n, S)$ of valency $p - 1$ admits a perfect code iff p divides n and the elements of $S \cup \{0\}$ are pairwise distinct mod p.

Theorem
(Feng, Huang and Z, 2017)
Let p be a prime and l the exponent of p in n.

A connected circulant graph $\text{Cay}(\mathbb{Z}_n, S)$ of valency $p^l - 1$ admits a perfect code iff the elements of $S \cup \{0\}$ are pairwise distinct mod p^l.

Y-P. Deng et al. (2017): Similar results but different approach. They also considered valency pq coprime to n/pq.
normal subgroups as perfect codes

Definition
A subset C of a group G is called a perfect 1-code of G if it is a perfect 1-code in some Cayley graph of G.

Theorem
(Huang, Xia and Z, 2017+)
Let G be a group and H a normal subgroup of G. Then H is a perfect 1-code of G iff

$$\forall g \in G \ (g^2 \in H) \ \exists h \in H \ ((gh)^2 = e).$$

Corollary
Any normal subgroup with odd order or odd index is a perfect code.
In particular, any normal subgroup of a group of odd order is a perfect code.
normal subgroups as perfect codes

Definition
A subset C of a group G is called a perfect 1-code of G if it is a perfect 1-code in some Cayley graph of G.

Theorem
(Huang, Xia and Z, 2017+)
Let G be a group and H a normal subgroup of G. Then H is a perfect 1-code of G iff

$$\forall g \in G \ (g^2 \in H) \ \exists h \in H \ ((gh)^2 = e).$$

Corollary
Any normal subgroup with odd order or odd index is a perfect code.
In particular, any normal subgroup of a group of odd order is a perfect code.
normal subgroups as perfect codes

Definition
A subset C of a group G is called a perfect 1-code of G if it is a perfect 1-code in some Cayley graph of G.

Theorem
(Huang, Xia and Z, 2017+)
Let G be a group and H a normal subgroup of G. Then H is a perfect 1-code of G iff

$$\forall g \in G \ (g^2 \in H) \ \exists h \in H \ ((gh)^2 = e).$$

Corollary
Any normal subgroup with odd order or odd index is a perfect code.
In particular, any normal subgroup of a group of odd order is a perfect code.
Theorem
(Huang, Xia and Z, 2017+)
Let G be an abelian group with Sylow 2-subgroup $P = \langle a_1 \rangle \times \cdots \times \langle a_n \rangle$.
Suppose that H is a subgroup of G such that $H \cap P$ is cyclic.
Then H is a perfect code of G iff either $H \cap P$ is trivial or $H \cap P$ projects onto at least one of $\langle a_1 \rangle, \ldots, \langle a_n \rangle$.

Corollary
(Huang, Xia and Z, 2017+)
Let G be a cyclic group and H a subgroup of G.
Then H is a perfect code of G iff either $|H|$ or $|G/H|$ is odd.
Theorem

(Huang, Xia and Z, 2017+)
Let G be an abelian group with Sylow 2-subgroup $P = \langle a_1 \rangle \times \cdots \times \langle a_n \rangle$.
Suppose that H is a subgroup of G such that $H \cap P$ is cyclic.
Then H is a perfect code of G iff either $H \cap P$ is trivial or $H \cap P$ projects onto at least one of $\langle a_1 \rangle, \ldots, \langle a_n \rangle$.

Corollary

(Huang, Xia and Z, 2017+)
Let G be a cyclic group and H a subgroup of G.
Then H is a perfect code of G iff either $\vert H \vert$ or $\vert G/H \vert$ is odd.
Theorem

(Huang, Xia and Z, 2017+)

Let \(D_{2n} = \langle a, b \mid a^n = b^2 = (ab)^2 = e \rangle \), and let \(H \) be a proper subgroup of \(D_{2n} \).

Then \(H \) is a perfect code of \(D_{2n} \) iff either \(H \not\subseteq \langle a \rangle \), or \(H \leq \langle a \rangle \) and at least one of \(|H|\) and \(n/|H| \) is odd.