Bounded topology of complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity

Huihong Jiang
(joint work with Yihu Yang)

Shanghai Jiao Tong University

Global Differential Geometry Workshop
Tsinghua Sanya International Mathematics Forum (TSIMF)
March 2, 2018
Motivation

Theorem (Cheeger-Gromoll 1972)

Let M^n be an n-dim complete noncompact Riemannian manifold with $\text{sec} \geq 0$, then M contains a soul $S \subset M$, which is a closed totally convex submanifold, such that M is diffeomorphic to the normal bundle over S.

In particular, such a manifold is of finite topological type (or has finite topology), that is to say, it is homeomorphic to the interior of a compact manifold with boundary.

Question: Is there any finiteness result for complete Riemannian manifolds with nonnegative Ricci curvature?
• For $n = 2$, YES. All notions of curvature coincide.

• For $n = 3$, YES. Such manifolds were first studied by Schoen and Yau by using stable minimal surfaces and recently classified by G. Liu (2013).

• For $n \geq 4$, NO. Require some additional conditions.
From now on, let M^n be an n-dimensional complete noncompact manifold, $p_0 \in M$ a fixed point, denoted by (M^n, p_0).

1. A point $p \in M^n (p \neq p_0)$ is said to be a critical point of the distance $r(p) = d(p_0, p)$ if and only if for all $v \in T_p M^n$ there is a minimal geodesic γ from p to p_0 such that $\angle(\gamma'(0), v) \leq \frac{\pi}{2}$.

2. **Isotopy Lemma** If $\overline{B(p_0, R_2)} \setminus B(p_0, R_1)$ ($R_1 < R_2 \leq \infty$) contains no critical point of the distance function r to p_0, then $\overline{B(p_0, R_2)} \setminus B(p_0, R_1)^{\text{homeo}} \cong \partial B(p_0, R_1) \times [R_1, R_2]$.
Basic Notions-diameter growth

- extrinsic diameter of geodesic sphere:

\[\text{diam}(S(p_0, t)) = \sup \{ d_M^n(x, y) : x, y \in S(p_0, t) \}. \]

- interior diameter:

\[\text{diam}(p_0; t) = \sup \text{diam}(\Sigma_i, M \setminus B(p_0, \frac{1}{2} t)). \]

where \(\Sigma_i \) is a connected component of \(S(p_0, t) \).

- Let \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) be a monotonic function. \((M^n, p_0)\) is said to have a diameter growth of order \(o(f) \) (resp. \(O(f) \)) if and only if \(f^{-1}(t) \text{diam}(p_0; t) \xrightarrow{t \to \infty} 0 \) (resp. remains bounded).
The results of finite topology

Theorem (Abresch-Gromoll 1990)

If \((M^n, p_0)\) satisfies

\[
Ric_{M^n} \geq 0, \\
K \geq -c^2, \\
diam(p_0; t) = o(t^{\frac{1}{n}}).
\]

Then \(M^n\) is of finite topological type.

The proof is based on the theory of critical point of distance function \((K \geq -c^2)\) and the estimate of excess function \((Ric_{M^n} \geq 0)\).
The results of finite topology

Set

\[K_{p_0}(t) = \inf_{M^n \setminus B(p_0, t)} K. \]

Theorem (Sha-Shen 1997)

If \((M^n, p_0)\) satisfies

\[\text{Ric}_{M^n} \geq 0, \]

\[K_{p_0}(t) \geq -\left(\frac{c}{1 + t^\alpha} \right)^2 \quad (c > 0, \ 0 \leq \alpha \leq 1), \]

\[\mu = \lim_{t \to \infty} \frac{\text{vol}(B(p_0, t))}{t^n} > 0, \]

\[\frac{\text{vol}(B(p_0, t))}{t^n} = \mu + o\left(\frac{1}{t^{(n-1)(1-\alpha)}} \right). \]

Then \(M^n\) is of finite topological type.
The results of finite topology

Along this line, we slightly improve the results

Theorem (J-Yang 2016)

If \((M^n, p_0)\) satisfies

\[
\begin{align*}
Ric_{M^n} &\geq 0, \\
K_{p_0}(t) &\geq -\left(\frac{c}{1 + t^\alpha}\right)^2 (c > 0, \ 0 \leq \alpha \leq 1), \\
diam(p_0; t) &< \delta(n, c, \alpha) t^{\frac{(n-1)\alpha + 1}{n}} \text{ for } t \text{ large enough.}
\end{align*}
\]

Then \(M^n\) is of finite topological type.
The examples of infinite topology

- (Sha-Yang 1989) There exists a complete 7-dimensional manifold with positive Ricci curvature, sectional curvature bounded below and diameter growth $O(r^{\frac{2}{3}})$, which is of infinite topological type.

- (Menguy 2000) There exists a complete 4-dimensional manifold with positive Ricci curvature, sectional curvature bounded below and maximal volume growth, which is of infinite topological type.

- (Menguy 2000) There exists a complete 4-dimensional manifold with positive Ricci curvature and bounded diameter growth, which is of infinite topological type.
The examples of infinite topology

Based on their construction, I make a summary of their examples:

For $0 \leq \alpha \leq 1$, there exists a complete 4-dimensional manifold M^4 with a base point p_0 satisfying

$$\text{Ric}_{M^4} > 0,$$

$$K_{p_0}(t) \geq -\left(\frac{h(t)}{1 + t^{2\alpha - 1}}\right)^2,$$

$$\text{diam}(p_0; r) = O(r^\alpha),$$

$$\text{vol}(B(p_0, r)) = O(r^{(n-1)\alpha + 1}),$$

and M^4 is of infinite topological type. Where $h(t)$ is a positive increasing function going to infinity when t is going to infinity.
Sha-Shen’s question

Question: Is a complete Riemannian manifold \((M^n, p_0)\) with \(\text{Ric} \geq 0\) and \(K_{p_0}(r) \geq -\left(\frac{c}{1+r}\right)^2\) for some \(c > 0\) always of finite topological type?

Note that the condition of sectional curvature here is sometimes called lower quadratic curvature decay (with constant \(c^2\)) or quadratically nonnegatively curved infinity. Similarly, we can define quadratic curvature decay.
Let \((M^n, p_0)\) be a complete Riemannian manifold with \(\text{Ric} \geq 0\) and \(K_{p_0}(r) \geq -\left(\frac{c}{1+r}\right)^2\).

- (Sha-Shen 1997) \(\lim_{t \to \infty} \frac{\text{vol}(B(p_0,t))}{t^n} > 0 \implies \text{finite topology}\)
- (Sha-Shen 1997) \(\lim_{t \to \infty} \frac{\text{vol}(B(p_0,t))}{t} < +\infty \implies \text{finite topology}\)
- (J-Yang 2016) \(\text{diam}(p_0; t) < \delta(n, c)t \implies \text{finite topology}\)

Note that for a complete Riemannian manifold \((M^n, p_0)\) with \(\text{Ric} \geq 0\), we always have

\[\text{diam}(p_0; t) \leq 10^n t.\]
Answer to the conjecture

- For $n = 2$, TRUE.
- For $n = 3$, TRUE.
- For $n = 4, 5$, UNKNOWN.
- For $n \geq 6$, FALSE.
Why do I focus on this conjecture?

- (Abresch 1985) If \((M^n, p_0)\) satisfies that \(\int_0^\infty tK^-_{p_0}(t)dt < +\infty\), here \(K^-_{p_0}(t) = \max\{-K_p(t), 0\}\), then it has finite topology.

- (Abresch 1985) Let \(\lambda : [0, \infty) \to [0, \infty)\) be a continuous function such that \(\int_0^\infty t\lambda(t)dt = +\infty\). Then every noncompact, connected surface \((M^2, p_0)\) carries a complete \(C^2\) metric \(g\) with curvature \(K(p) = -\lambda(d(p_0, p))\) at any point \(p \in M^2\).

- (Gromov 1982 and also Lott-Shen 2000) Any (smooth paracompact) noncompact manifold \(M^n\) admits a complete Riemannian metric with quadratic curvature decay.
The answer to Sha-Shen’s question for $n \geq 6$

Theorem (J-Yang 2017)

There exists a complete Riemannian manifold M^6 with the base point p_0 satisfying

\[
\begin{align*}
Ric &> 0, \\
K_{p_0}(t) &\geq -\left(\frac{K_0}{1 + t}\right)^2, \\
\lim_{t \to \infty} \frac{vol(B_t(p_0))}{t^6} &= 0, \\
diam(p_0; t) &= O(t),
\end{align*}
\]

which is of infinite topological type.
Remarks

- Taking a metric product of the 6-dimensional example with standard spheres, we can get higher dimensional counterexamples which remain these properties.

- Note that our finite result of diameter growth does not reject our example, since \(\delta(n, K_0) = \frac{2K_0 - \cosh^{-1}(\cosh^2 K_0)}{16} \left(\frac{1}{K_0} \right)^{\frac{n-1}{n}} \) goes to 0 when \(K_0 \) goes to infinity.
The construction of Menguy’s example

He starts with $ds^2 = dt^2 + u^2(t)[dx^2 + f^2(t, x)d\sigma^2]$, which almost looks like a 4-dim metric cone

$$ds^2 = dt^2 + (ct)^2[dx^2 + (R_0 \sin x)^2 d\sigma^2]$$

where $0 < c < 1$ and $R_0 \ll 1$, $d\sigma^2$ is the canonical metric of S^2.

Choose an increasing sequence \(\{t_i\}_{i=1}^{+\infty} \) with $t_i \xrightarrow{i \to +\infty} +\infty$ and set $r_i = \frac{t_i}{h(t_i)}$, here $h(t)$ is an increasing function slowly going to infinity as $t \to \infty$. For $t_i < t < t_i + 2r_i$, set

$$u(t) = \frac{1}{\sqrt{K_i}} \sin(\sqrt{K_i}(t - t_i + \psi_i)).$$

And

$$u(t) \sim ct.$$
The construction of Menguy’s example

Then

remove the geodesic ball $B^{4}_{\frac{4}{5}r_{i}}(o_{i})(o_{i} = (t_{i} + r_{i}, 0))$
and glue in a \mathbb{CP}^{2} via a neck of Perelman.

During this process, to preserve positive Ricci curvature, we need

(Perelman 1997) Let M_{1}, M_{2} be compact smooth manifolds of positive Ricci curvature, with isometric boundaries $\partial M_{1} \cong \partial M_{2} = X$. Suppose that the normal curvatures of ∂M_{1} are bigger than the negatives of the corresponding normal curvatures of ∂M_{2}. Then the result $M_{1} \bigcup_{X} M_{2}$ of gluing M_{1} and M_{2} can be smoothed near X to produce a manifold of positive Ricci curvature.
The construction of Menguy’s example

Perelman’s Neck: Let \((S^n, g = dt^2 + B^2(t)d\sigma^2) \) be a rotationally symmetric metric satisfying

(i) sectional curvature > 1;

(ii) \(0 \leq t \leq \pi R, \max_t\{B(t)\} = R_0 \), there exists \(\rho \) sufficiently small such that \(0 < R_0 < \rho < R \) and \(R_0^{n-1} < \rho^n \).

Then there exists a metric of \(S^n \times [0, 1] \) such that

1) \(Ric > 0 \);

2) the boundary component \(S^n \times \{0\} \) is concave, with normal curvatures equal to \(-\lambda \), and is isometric to \(S^n(\rho \lambda^{-1}) \), for some \(\lambda > 0 \);

3) the boundary component \(S^n \times \{1\} \) is strictly convex, with all its normal curvatures bigger than 1, and is isometric to \((S^n, g) \).
The construction of Menguy’s example

We can continue this surgery when i is going to infinity. Then we get a manifold with infinite second Betti number, which is of course of infinite topological type.

Since $r_i = \frac{t_i}{h(t_i)}$, we have

$$K_{p_0}(t) \geq -\left(\frac{h(t)}{1 + t}\right)^2.$$

Since $u(t) = O(t)$, we have

$$\text{vol}(B_t(p_0)) = O(t^4).$$
The construction of our counterexample

Note that $h(t)$ is essential to keep $-\frac{u_{tt}}{u} \geq 0$ so that Ricci curvature can be controlled to be positive, which forces the sectional curvature to be a little weaker than quadratically nonnegatively curved infinity.

In our construction, we set $r_i = rt_i = O(t)$ to get exact quadratically nonnegatively curved infinity. To ensure that Ricci curvature is positive, we add the second product part $\times g(t) S^2$ to control the curvatures through the newly added directions (i.e. $-3 \frac{u_{tt}}{u} - 2 \frac{g_{tt}}{g} \geq 0$), that is a doubly warped product metric

$$ds^2 = dt^2 + u^2(t)[dx^2 + \hat{f}^2(t, x)d\sigma^2] + g^2(t)d\theta^2$$

where $d\sigma^2, d\theta^2$ are both standard metrics of S^2.
The construction of the counterexample

To keep the surgery of gluing \mathbb{CP}^2’s still working, we set $g(t)$ to be constant for $t_i + \frac{r_i}{6} < t < t_i + \frac{11r_i}{6}$. And $g(t)$ almost looks like t^γ. Moreover, to obtain positive Ricci curvature, the order γ of $g(t)$ must be sufficiently smaller than 1.

Since $r_i = O(t)$, we have

$$K_{p_0}(t) \geq -\left(\frac{K_0}{1 + t}\right)^2.$$

Since $u(t) = O(t)$, we have

$$\text{diam}(p_0; t) = O(t).$$

Since $g(t) = O(t^\gamma)$, we have

$$\text{vol}(B_t(p_0)) = O(t^{4+2\gamma}).$$
Thanks for your attention!