研讨会摘要(Abstract)
本次研讨会举办的目的是将奇点理论各个领域的专家聚集在一起。这些专家的研究领域将囊括经典奇点理论,以及精确科学和自然科学的新分支-数学建模及其应用。我们计划邀请涵盖多个领域的大会报告,主要是奇点理论中基于几何学的代数和解析问题。会议将围绕奇点理论及其相关领域展开讨论,包括:光滑映射和微分形式的奇异性、次解析集与半代数集、Lipschitz分层、实代数奇点、Lagrangian奇点和Legendrian奇点、焦散和潜波的渐进行为、辛奇点、局部不变量、辛奇异、切触空间和泊松空间、奇点的局部代数、消解代数、焦散和波前的分叉、奇异约化、哈密顿系统及其推广、奇点微分几何、曲线和曲面的仿射不变量、自由除子、环面作用、奇点拓扑、正特征奇点与代数几何中的奇点。
Symposium Abstract
The purpose of this symposium is to bring together experts from various fields of singularity theory. These specialists' research areas will span from classical singularity theory to new branches of the exact and natural sciences, including mathematical modeling and its applications. We plan to invite keynote speakers who will showcase different aspects, primarily focusing on algebraic and analytic problems in singularity theory based on geometry. The discussions will center around singularity theory and related fields, including: singularities of smooth mappings and differential forms, subanalytic sets and semi-algebraic sets, Lipschitz stratifications, real algebraic singularities, Lagrangian and Legendrian singularities, asymptotic behavior of caustics and wavefronts, symplectic singularities, local invariants, symplectic singularities, contact and Poisson spaces, local algebras of singularities, resolutions of singularities, bifurcation of caustics and wavefronts, singular reduction, Hamiltonian systems and their generalizations, differential geometry of singularities, affine invariants of curves and surfaces, free divisors, torus actions, topology of singularities, and singularities of positive characteristic and singularities in algebraic geometry theory.
举办意义(Description of the aim)
本次研讨会还旨在强调数学在工业和纳米科学的重要性,尤其是纳米医学。数学和计算方法在纳米材料的理论理解中起着主要作用。这两种方法都可以为实验结果的分析和解释、基于模型的定量和定性行为预测、以及纳米级系统的控制提供有效的理论和模拟。数学在这些不同学科的相互作用中也起着至关重要的作用,因为它们都使用数据、模拟和可视化。
我们计划利用这次会议,为奇点及其应用的新成果提供一个良好的交流平台,进一步促进数学思想和实用科学新分支的交互发展。本次会议将与日本九州大学工业数学研究院(IMI)特别合作,进行组织。
Description of the Aim
This symposium also aims to highlight the significance of mathematics in industrial and nanoscale sciences, particularly in nanomedicine. Mathematical and computational methods play a pivotal role in the theoretical understanding of nanomaterials. Both approaches provide effective theoretical and simulation tools for analyzing and interpreting experimental results, predicting the quantitative and qualitative behavior based on models, and controlling nanoscale systems. Mathematics also plays a crucial role in the interaction of these diverse disciplines, as they all rely on data, simulation, and visualization.
Call for Presentations
We kindly invite all speakers to submit their presentation abstracts for the symposium. Please click the one of the links below to access the submission page and follow the provided instructions to complete the required information. We look forward to your valuable contributions!
Domestic Speakers: Submit Abstract
International Speakers: Submit Abstract
Stephen S.-T. Yau, Tsinghua University&BIMSA
Stanislaw Janeczko, Warsaw University of Technology
Huaiqing Zuo, Tsinghua University
Zhiwen Liu, BIMSA